Rasterization

Teacher: A.prof. Chengying Gao (高成英)

E-mail: mcsgcy@mail.sysu.edu.cn

School of Data and Computer Science
To make an image, we can...

Drawing

Photography
Two Ways to Render an Image

In CG, drawing is...

Rasterization

Photography is...

Ray Tracing

Ray Tracing

Camera

Light Source

View Ray

Shadow Ray

Scene Object
Screen
真实物理世界没有颜色的概念，只有频率。颜色只是人的主观感受，不是物体的客观属性，物体只是在发射或反射电磁波。
Rasterization

• The task of displaying a world modeled using primitives like lines, polygons, filled/patterned area, etc. can be carried out in two steps:
 • determine the pixels through which the primitive is visible,
 • determine the color value to be assigned to each such pixel
Raster Graphics Packages

• The efficiency of these steps forms the main criteria to determine the performance of a display

• The raster graphics package is typically a collection of efficient algorithms for scan converting (rasterization) of the display primitives

• High performance graphics workstations have most of these algorithms implemented in hardware

• Comparison of raster graphics editors:

Rasterization

To convert **vector data** to raster format

Scan Conversion: Figure out which pixel should to shade.
Scan converting lines

start from \((x_1, y_1)\) end at \((x_2, y_2)\)
Scan converting lines

\[
\text{start from } (x_1, y_1) \text{ end at } (x_2, y_2)
\]
Scan converting lines

start from \((x_1, y_1)\) end at \((x_2, y_2)\)
Scan converting lines

\[\text{start from } (x_1, y_1) \text{ end at } (x_2, y_2) \]
Scan converting lines

(start from x_1, y_1) end at x_2, y_2
Scan converting lines

- Requirements
 - chosen pixels should lie as close to the ideal line as possible
 - the sequence of pixels should be as straight as possible
 - all lines should appear to be of constant brightness independent of their length and orientation
 - should start and end accurately
 - should be drawn as rapidly as possible
 - should be possible to draw lines with different width and line styles
Scan converting lines

Question 1: How?

$(x_1, y_1), (x_2, y_2)$
Scan converting lines

Question 1: How?

\((x_1, y_1), (x_2, y_2)\)

\[y = mx + b \]

\[x_1 + 1 \Rightarrow y = ?, \text{ rounding} \]

\[x_1 + 2 \Rightarrow y = ?, \text{ rounding} \]

\[x_1 + i \Rightarrow y = ?, \text{ rounding} \]
Equation of Line

- Equation of a line is \(y - mx + c = 0 \)

- For a line segment joining points \(P(x_1, y_1) \) and \(Q(x_2, y_2) \)

 \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]

- Slope \(m \) means that for every unit increment in \(x \) the increment in \(y \) is \(m \) units
Digital Differential Analyzer (DDA, 数值微分法)

- We consider the line in the first octant. Other cases can be easily derived.
- Uses differential equation of the line
 \[y_i = mx_i + c \]
 where, \[m = \frac{y_2 - y_1}{x_2 - x_1} \]
- Incrementing X-coordinate by 1
 \[x_i = x_{i \text{prev}} + 1 \]
 \[y_i = y_{i \text{prev}} + m \]
- Illuminate the pixel \([x_i, \text{round}(y_i)]\)
Digital Differential Analyzer (DDA, 数値微分法)

If \(\triangle x < \triangle y \)
Digital Differential Analyzer (DDA, 数值微分法)

If $\triangle x < \triangle y$
Digital Differential Analyzer (DDA)

\[\text{If } \Delta x \leq \Delta y \]
Digital Differential Analyzer (DDA)

If $\triangle x < \triangle y$
Digital Differential Analyzer (DDA)

\[\text{If } \Delta x < \Delta y \]
Digital Differential Analyzer (DDA)

\[\text{If } \triangle x < \triangle y \]
Digital Differential Analyzer (DDA)

\[
\text{If } \Delta x < \Delta y
\]
Digital Differential Analyzer (DDA)

\[\text{If } \Delta x < \Delta y \]

\[y += 1, \ x += 1/m \]
Digital Differential Analyzer (DDA)

\[
\text{If } \Delta x < \Delta y
\]

\[
y + = 1, \ x + = 1/m
\]
Digital Differential Analyzer (DDA)

If $\Delta x < \Delta y$

\[y += 1, \quad x += 1/m \]
Digital Differential Analyzer (DDA)

\[\text{If } \Delta x < \Delta y \]

\[y += 1, \quad x += 1/m \]
Digital Differential Analyzer (DDA)

If $\triangle x < \triangle y$

\[y += 1, \quad x += \frac{1}{m} \]
Digital Differential Analyzer (DDA)

\[\text{If } \Delta x \leq \Delta y \]

\[y += 1, \ x += \frac{1}{m} \]

Divide and conquer!
DDA Algorithm

```c
#include "device.h"
#include ROUND(a) ((int) (a+0.5))
Void LineDDA( int xa, int ya, int xb, int yb)
{
    int dx =xb-xa, dy=yb-ya, steps, k;
    float xIncrement, yIncrement, x=xax, y=ya;

    if (abs(dx)>abs(dy)) steps=abs(dx);
    else steps=abs(dy);
    xIncrement=dx/(float) steps;
    yIncrement=dy/(float) steps;

    setPixel (ROUND(x), ROUND(y));
    for (k=0;k<steps; k++)
    {
        x+=xIncrement; y+=yIncrement; SetPixel (ROUND(x), ROUND(y));
    }
}
```
Bresenham’s algorithm (布兰森汉姆算法)

- Introduced in 1967 by J. Bresenham of IBM
- Best-fit approximation under some conditions
- In DDA, only y_i is used to compute y_{i+1}, the information for selecting the pixel is neglected
- Bresenham algorithm employs the information to constrain the position of the next pixel
Notations

- The line segment is from \((x_0, y_0)\) to \((x_1, y_1)\)
- Denote \(\Delta x = x_1 - x_0 > 0, \Delta y = y_1 - y_0 > 0\) \(m = \Delta y / \Delta x\)
- Assume that slope \(|m| \leq 1\)
- Like DDA algorithm, Bresenham Algorithm also starts from \(x = x_0\)
 and increases x coordinate by 1 each time
- Suppose the i-th point is \((x_i, y_i)\)
- Then the next point can only be one of the following two
 \((\bar{x}_i + 1, \bar{y}_i)\) \((\bar{x}_i + 1, \bar{y}_i + 1)\)
Criteria (判别标准)

- We will choose one which distance to the following intersection is shorter

\[
x_{i+1} = x_i + 1
\]
\[
y_{i+1} = mx_i + B = m(x_i + 1) + B.
\]
Computation of Criteria

- The distances are respectively

\[
\begin{align*}
d_{\text{upper}} &= \bar{y}_i + 1 - y_{i+1} \\
&= \bar{y}_i + 1 - mx_{i+1} - B \\
d_{\text{lower}} &= y_{i+1} - \bar{y}_i \\
&= mx_{i+1} + B - \bar{y}_i
\end{align*}
\]

显然：如果 $d_{\text{lower}} - d_{\text{upper}} > 0$ 则应取右上方的点；如果 $d_{\text{lower}} - d_{\text{upper}} < 0$ 则应取右边的点； $d_{\text{lower}} - d_{\text{upper}} = 0$ 可任取，如取右边点。
Computation of Criteria

\[d_{\text{lower}} - d_{\text{upper}} = m(x_i + 1) + B - \bar{y}_i - (\bar{y}_i + 1 - m(x_i + 1) - B) \]

\[= 2m(x_i + 1) - 2\bar{y}_i + 2B - 1 \]

• It has the same sign with

\[p_i = \Delta x \cdot (d_{\text{lower}} - d_{\text{upper}}) = 2\Delta y \cdot (x_i + 1) - 2\Delta x \cdot \bar{y}_i + (2B - 1)\Delta x \]

\[= 2\Delta y \cdot x_i - 2\Delta x \cdot \bar{y}_i + (2B - 1)\Delta x + 2\Delta y \]

\[= 2\Delta y \cdot x_i - 2\Delta x \cdot \bar{y}_i + c \]

where

\[\Delta x = x_1 - x_0, \, \Delta y = y_1 - y_0, \, m = \Delta y / \Delta x \]

\[c = (2B - 1)\Delta x + 2\Delta y \]
Restatement of the Criteria

- If $p_i > 0$, then $(\bar{x}_i + 1, \bar{y}_i + 1)$ is selected

- If $p_i < 0$, then $(\bar{x}_i + 1, \bar{y}_i)$ is selected

- If $p_i = 0$, arbitrary one

Can we simplify the computation of p_i?

\[
p_0 = 2\Delta y \cdot x_0 - 2\Delta x \cdot \bar{y}_0 + (2B - 1)\Delta x + 2\Delta y
\]

\[
= 2\Delta y \cdot x_0 - 2(\Delta y \cdot x_0 + B \cdot \Delta x) + (2B - 1)\Delta x + 2\Delta y
\]

\[
= 2\Delta y - \Delta x
\]

\[
y_{i+1} = mx_{i+1} + B
\]
Recursive for computation of p_i

- As

$$p_{i+1} - p_i = (2\Delta y \cdot x_{i+1} - 2\Delta x \cdot y_{i+1} + c) - (2\Delta y \cdot x_i - 2\Delta x \cdot y_i + c)$$

$$= 2\Delta y - 2\Delta x (y_{i+1} - y_i)$$

- If $p_i \leq 0$ then $y_{i+1} - y_i = 0$ therefore

$$p_{i+1} = p_i + 2\Delta y$$

- If $p_i > 0$ then $y_{i+1} - y_i = 1$ therefore

$$p_{i+1} = p_i + 2\Delta y - 2\Delta x$$
Summary of Bresenham Algorithm

- **draw** \((x_0, y_0)\)

- **Calculate** \(\Delta x, \Delta y, 2\Delta y, 2\Delta y - 2\Delta x, p_0 = 2\Delta y - \Delta x\)

- **If** \(p_i \leq 0\) **draw** \((x_{i+1}, \bar{y}_{i+1}) = (x_i + 1, \bar{y}_i)\)

 and **compute** \(p_{i+1} = p_i + 2\Delta y\)

- **If** \(p_i > 0\) **draw** \((x_{i+1}, \bar{y}_{i+1}) = (x_i + 1, \bar{y}_i + 1)\)

 and **compute** \(p_{i+1} = p_i + 2\Delta y - 2\Delta x\)

- **Repeat** the last two steps
Example

• Draw line segment (3,4)-(8,7)
(Continued)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>(p_k)</td>
<td>((x_{k+1}, y_{k+1}))</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(4,5)</td>
</tr>
<tr>
<td>1</td>
<td>-3</td>
<td>(5,5)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>(6,6)</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>(7,6)</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>(8,7)</td>
</tr>
</tbody>
</table>

\[(x_0, y_0) = (3,4)\]

注: \(p_0 = 2\Delta y - \Delta x\) \(p_{i+1} = p_i + 2\Delta y\) \(p_{i+1} = p_i + 2\Delta y - 2\Delta x\)
More Raster Line Issues

- The coordinates of endpoints are not integer
- Generalize to draw other primitives: circles, ellipsoids
- Line pattern and thickness?
3D Bresenham algorithm
What Makes a Good Line?

• Not too jaggy

• Uniform thickness of lines at different angles

• Symmetry, $\text{Line}(P,Q) = \text{Line}(Q,P)$

• A good line algorithm should be fast.
Line Attributes

• line width
• dash patterns
• end caps: butt, round, square
Line Attributes

- Joins: round, bevel, miter
Scan conversion of circles

A circle with center \((x_c, y_c)\) and radius \(r\):

\[(x-x_c)^2 + (y-y_c)^2 = r^2\]

orthogonal coordinate

\[y = y_c \pm \sqrt{r^2 - (x - x_c)^2}\]
Polygon Rasterization

Takes shapes like triangles and determines which pixels to set

1. Polygon *scan-conversion*
 - sweep the polygon by *scan line*, set the pixels whose center is inside the polygon for each scan line

2. Polygon *fill*
 - select a pixel inside the polygon
 - grow outward until the whole polygon is filled
Scan conversion of polygon

- Polygon representation

![Polygon representation](image)

By vertex

By lattice

- Polygon filling:
 vertex representation \rightarrow lattice representation
Polygon filling

- fill a polygonal area --> test every pixel in the raster to see if it lies inside the polygon.
Inside Check

even-odd test

Computer Graphics 2014, ZJU
Scan-line Methods

• Makes use of the coherence properties
 • Spatial coherence: Except at the boundary edges, adjacent pixels are likely to have the same characteristics
 • Scan line coherence: Pixels in the adjacent scan lines are likely to have the same characteristics
 • Uses intersections between area boundaries and scan lines to identify pixels that are inside the area
Scan Line Method

- Proceeding from left to right the intersections are paired and intervening pixels are set to the specified intensity

- Algorithm
 - Find the intersections of the scan line with all the edges in the polygon
 - Sort the intersections by increasing X-coordinates
 - Fill the pixels between pair of intersections

Discussion: How to speed up, or how to avoid calculating intersection
Efficiency Issues Scan-line Methods

- Intersections could be found using edge coherence. The X-intersection value x_{i+1} of the lower scan line can be computed from the X-intersection value x_i of the preceding scanline as:

$$x_{i+1} = x_i + \frac{1}{m}$$

- List of active edges could be maintained to increase efficiency.
- Efficiency could be further improved if polygons are convex, much better if they are only triangles.
Special cases for Scan-line Methods

- Overall topology should be considered for intersection at the vertices
- Intersections like I_1 and I_2 should be considered as two intersections
- Intersections like I_3 should be considered as one intersection
- Horizontal edges like E need not be considered
Advantages of Scan Line method

• The algorithm is efficient
• Each pixel is visited only once
• Shading algorithms could be easily integrated with this method to obtain shaded area
• Efficient could be further improved if polygons are convex
• Much better if they are only triangles
What is Convex?

A set C in S is said to be convex if, for all x and y in C and all t in the interval $[0,1]$, the point

$$(1-t)x + ty$$

is in C.
Convex Polygon Rasterization

One in and one out
Triangle Rasterization

Two questions:
• which pixel to set?
• what color to set each pixel to?

How would you rasterize a triangle?
1. Edge-walking
2. Edge-equation
3. Barycentric-coordinate based
Edge Walking

Idea:

- scan top to bottom in scan-line order
- “walk” edges: use edge slope to update coordinates incrementally
- on each scan-line, scan left to right (horizontal span), setting pixels
- stop when bottom vertex or edge is reached
void edge_walking(vertices T[3])
{
 for each edge pair of T {
 initialize x_L, x_R;
 compute dx_L/dy_L and dx_R/dy_R;
 for scanline at y {
 for (int $x = x_L$; $x <= x_R$; $x++$) {
 set_pixel(x, y);
 }
 }
 $x_L += dx_L/dy_L$;
 $x_R += dx_R/dy_R$;
 }
}
Edge Walking Triangle

- Split triangles into two “trapezoids” with continuous left and right edges

\[
\text{scanTrapezoid}(x_3, x_m, y_3, y_1, \frac{1}{m_{13}}, \frac{1}{m_{12}})
\]

\[
\text{scanTrapezoid}(x_2, x_2, y_2, y_3, \frac{1}{m_{23}}, \frac{1}{m_{12}})
\]
Edge Walking

Advantage: very simple

Disadvantages:
- very serial (one pixel at a time) ⇒ can’t parallelize
- inner loop bottleneck if lots of computation per pixel
- special cases will make your life miserable
 - horizontal edges: computing intersection causes divide by 0!

- sliver: not even a single pixel wide
Edge Equations

1. compute edge equations from vertices
 - orient edge equations: let negative halfspaces be on the triangle's exterior (multiply by -1 if necessary)
2. scan through each pixel and evaluate against all edge equations
3. set pixel if all three edge equations > 0
Edge Equations

```c
void edge_equations(vertices T[3])
{
    bbox b = bound(T);
    foreach pixel(x, y) in b {
        inside = true;
        foreach edge line L_i of Tri {
            if (L_i.A*x+L_i.B*y+L_i.C < 0) {
                inside = false;
            }
        }
    }
    if (inside) {
        set_pixel(x, y);
    }
}
```
Edge Equations

Can we reduce #pixels tested?

1. compute a bounding box:
 \[x_{min}, y_{min}, x_{max}, y_{max} \] of triangle

2. compute edge equations from vertices
 - orient edge equations: let negative halfspaces be on the triangle's exterior (multiply by -1 if necessary)
 - can be done incrementally per scan line

3. scan through each pixel in bounding box and evaluate against all edge equations

4. set pixel if all three edge equations > 0

Hierarchical bounding boxes
- how to quickly exclude a bounding box?
Aliasing

- Aliasing is caused due to the discrete nature of the display device.
- Rasterizing primitives is like sampling a continuous signal by a finite set of values (point sampling).
- Information is lost if the rate of sampling is not sufficient. This sampling error is called aliasing.
- Effects of aliasing are:
 - Jagged edges
 - Incorrectly rendered fine details
 - Small objects might miss
Aliasing

• A classic part of the computer graphics curriculum

• Input:
 • Line segment definition
 • \((x_1, y_1), (x_2, y_2)\)

• Output:
 • List of pixels

\[(x_1, y_1) \rightarrow (x_2, y_2)\]
Aliasing

• How Do They Look?
• So now we know how to draw lines
• But they don’t look very good:
Antialiasing
Anti-aliasing

• Application of techniques to reduce/eliminate aliasing artifacts.

• Essentially 3 techniques:
 • Super-sampling vs. filter
 • We discussed a simple averaging filter
 • Compute the fraction of a line that should be applied to a pixel
 • Ratio method
 • Area Simpling
Anti-aliasing: Super-sampling

• Technique:

1. Create an image 2x (or 4x, or 8x) bigger than the real image
2. Scale the line endpoints accordingly
3. Draw the line as before
 • No change to line drawing algorithm
4. Average each 2x2 (or 4x4, or 8x8) block into a single pixel
Anti-aliasing: Super-sampling

No antialiasing 2x2 Supersampled Downsampling to original size
Anti-aliasing: Ratios

\[
\left(0.5 \times \text{MAX} \left(\frac{\text{error}}{x_1 - x_0}, 0 \right) \right) \text{RGB}
\]

\[
\left(1.0 - 0.5 \times \text{abs} \left(\frac{\text{error}}{x_1 - x_0} \right) \right) \text{RGB}
\]

\[
\left(0.5 \times \text{MAX} \left(\frac{-\text{error}}{x_1 - x_0}, 0 \right) \right) \text{RGB}
\]
Anti-aliasing: Ratios
Anti-aliasing (Area Sampling)

- A scan converted primitive occupies finite area on the screen.
- Intensity of the boundary pixels is adjusted depending on the percent of the pixel area covered by the primitive. This is called weighted area sampling.